pot.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:adagan 作者: tolstikhin 项目源码 文件源码
def vgg_16(inputs,
           is_training=False,
           dropout_keep_prob=0.5,
           scope='vgg_16',
           fc_conv_padding='VALID', reuse=None):
    inputs = inputs * 255.0
    inputs -= tf.constant([123.68, 116.779, 103.939], dtype=tf.float32)
    with tf.variable_scope(scope, 'vgg_16', [inputs], reuse=reuse) as sc:
      end_points_collection = sc.name + '_end_points'
      end_points = {}
      # Collect outputs for conv2d, fully_connected and max_pool2d.
      with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
                          outputs_collections=end_points_collection):
        end_points['pool0'] = inputs
        net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
        net = slim.max_pool2d(net, [2, 2], scope='pool1')
        end_points['pool1'] = net
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
        net = slim.max_pool2d(net, [2, 2], scope='pool2')
        end_points['pool2'] = net
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
        net = slim.max_pool2d(net, [2, 2], scope='pool3')
        end_points['pool3'] = net
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
        net = slim.max_pool2d(net, [2, 2], scope='pool4')
        end_points['pool4'] = net
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
        net = slim.max_pool2d(net, [2, 2], scope='pool5')
        end_points['pool5'] = net
  #       # Use conv2d instead of fully_connected layers.
  #       net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6')
  #       net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
  #                          scope='dropout6')
  #       net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
  #       net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
  #                          scope='dropout7')
  #       net = slim.conv2d(net, num_classes, [1, 1],
  #                         activation_fn=None,
  #                         normalizer_fn=None,
  #                         scope='fc8')
        # Convert end_points_collection into a end_point dict.
  #       end_points = slim.utils.convert_collection_to_dict(end_points_collection)
        return net, end_points
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号