def create_discriminator(hr_images_fake, hr_images, cfg):
n_layers = 3
layers = []
input = tf.concat([hr_images_fake, hr_images ], axis = 3)
conv = slim.conv2d(input, cfg.ndf, [3,3], stride = 2, activation_fn = lrelu, scope = 'layers%d'%(0))
layers.append(conv)
for i in range(n_layers):
out_channels = cfg.ndf*min(2**(i+1), 8)
stride = 1 if i == n_layers -1 else 2
conv = slim.conv2d(layers[-1], out_channels, [3,3], stride = stride, activation_fn = lrelu, scope = 'layers_%d'%(i+2))
layers.append(conv)
conv = slim.conv2d(layers[-1], 1, [3,3], stride = 1)
output = tf.sigmoid(conv)
return output
评论列表
文章目录