def train(img_shape):
# Model
model = Sequential()
model.add(
Convolution2D(32, 3, 3, input_shape=img_shape, activation='relu', W_constraint=maxnorm(3), dim_ordering='tf'))
model.add(Dropout(0.2))
model.add(Convolution2D(32, 3, 3, activation='relu', W_constraint=maxnorm(3), dim_ordering='tf'))
model.add(MaxPooling2D())
model.add(Convolution2D(32, 3, 3, activation='relu', W_constraint=maxnorm(3), dim_ordering='tf'))
model.add(MaxPooling2D())
model.add(Convolution2D(32, 3, 3, activation='relu', W_constraint=maxnorm(3), dim_ordering='tf'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
model.add(Dropout(0.5))
model.add(Dense(8))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
for features, labels in feature_labels_generator():
model.fit(features, labels, nb_epoch=1)
# TODO: Get generator to
# samples_per_epoch = 100
# model.fit_generator(feature_labels_generator(), samples_per_epoch, nb_epoch=10)
return model
cnn_bounding_box.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录