yolo_layers.py 文件源码

python
阅读 22 收藏 0 点赞 0 评论 0

项目:mcv-m5 作者: david-vazquez 项目源码 文件源码
def __init__(self, nb_filter, nb_row, nb_col,
                 init='glorot_uniform', activation=None, weights=None,
                 border_mode='valid', subsample=(1, 1), dim_ordering='default',
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, epsilon=1e-3, momentum=0.99,
                 beta_init='zero', gamma_init='one',
                 gamma_regularizer=None, beta_regularizer=None, **kwargs):
        if dim_ordering == 'default':
            dim_ordering = K.image_dim_ordering()
        if border_mode not in {'valid', 'same', 'full'}:
            raise ValueError('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.border_mode = border_mode
        self.subsample = tuple(subsample)
        if dim_ordering not in {'tf', 'th'}:
            raise ValueError('dim_ordering must be in {tf, th}.')
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        # added for BatchNormalization
        self.supports_masking = True
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.epsilon = epsilon
        self.momentum = momentum
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        self.uses_learning_phase = True
        super(YOLOConvolution2D, self).__init__(**kwargs)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号