def frame_level_rnn(input_sequences, h0, reset):
"""
input_sequences.shape: (batch size, n frames * FRAME_SIZE)
h0.shape: (batch size, N_GRUS, DIM)
reset.shape: ()
output.shape: (batch size, n frames * FRAME_SIZE, DIM)
"""
learned_h0 = lib.param(
'FrameLevel.h0',
numpy.zeros((N_GRUS, DIM), dtype=theano.config.floatX)
)
learned_h0 = T.alloc(learned_h0, h0.shape[0], N_GRUS, DIM)
learned_h0 = T.patternbroadcast(learned_h0, [False] * learned_h0.ndim)
h0 = theano.ifelse.ifelse(reset, learned_h0, h0)
frames = input_sequences.reshape((
input_sequences.shape[0],
input_sequences.shape[1] / FRAME_SIZE,
FRAME_SIZE
))
# Rescale frames from ints in [0, Q_LEVELS) to floats in [-2, 2]
# (a reasonable range to pass as inputs to the RNN)
frames = (frames.astype('float32') / lib.floatX(Q_LEVELS/2)) - lib.floatX(1)
frames *= lib.floatX(2)
gru0 = lib.ops.LowMemGRU('FrameLevel.GRU0', FRAME_SIZE, DIM, frames, h0=h0[:, 0])
grus = [gru0]
for i in xrange(1, N_GRUS):
gru = lib.ops.LowMemGRU('FrameLevel.GRU'+str(i), DIM, DIM, grus[-1], h0=h0[:, i])
grus.append(gru)
output = lib.ops.Linear(
'FrameLevel.Output',
DIM,
FRAME_SIZE * DIM,
grus[-1],
initialization='he'
)
output = output.reshape((output.shape[0], output.shape[1] * FRAME_SIZE, DIM))
last_hidden = T.stack([gru[:,-1] for gru in grus], axis=1)
return (output, last_hidden)
评论列表
文章目录