def conv1d(name,input,kernel,stride,n_filters,depth,bias=False,batchnorm=False,pad='valid',filter_dilation=(1,1),run_mode=0):
W = lib.param(
name+'.W',
lasagne.init.HeNormal().sample((n_filters,depth,kernel,1)).astype('float32')
)
out = T.nnet.conv2d(input,W,subsample=(stride,1),border_mode=pad,filter_dilation=filter_dilation)
if bias:
b = lib.param(
name + '.b',
np.zeros(n_filters).astype('float32')
)
out += b[None,:,None,None]
if batchnorm:
out = BatchNorm(name,out,n_filters,mode=1,run_mode=run_mode)
return out
评论列表
文章目录