def load_wemb(params, vocab):
wemb = pkl.load(open(prm.wordemb_path, 'rb'))
dim_emb_orig = wemb.values()[0].shape[0]
W = 0.01 * np.random.randn(prm.n_words, dim_emb_orig).astype(config.floatX)
for word, pos in vocab.items():
if word in wemb:
W[pos,:] = wemb[word]
if prm.dim_emb < dim_emb_orig:
pca =PCA(n_components=prm.dim_emb, copy=False, whiten=True)
W = pca.fit_transform(W)
params['W'] = W
return params
评论列表
文章目录