def init_params(options,W):
n_h = options['n_h']
n_y = options['n_y']
params = OrderedDict()
# W is initialized by the pretrained word embedding
params['Wemb'] = W.astype(config.floatX)
# otherwise, W will be initialized randomly
# n_words = options['n_words']
# n_x = options['n_x']
# params['Wemb'] = uniform_weight(n_words,n_x)
# bidirectional LSTM
params = param_init_encoder(options,params,prefix="gru_encoder")
params = param_init_encoder(options,params,prefix="gru_encoder_rev")
params['Wy'] = uniform_weight(2*n_h,n_y)
params['by'] = zero_bias(n_y)
return params
gru_classifier.py 文件源码
python
阅读 16
收藏 0
点赞 0
评论 0
评论列表
文章目录