def text_feature_extract_model1(embedding_size=128, hidden_size=256):
'''
this is a model use normal Bi-LSTM and maxpooling extract feature
examples:
????????? [ 1.62172219e-05]
???????? [ 1.65377696e-05]
?????,??? [ 1.]
???????? [ 1.]
????????? [ 1.76498161e-05]
??????????????16?12?????????? [ 1.59666997e-05]
??????????????????? [ 1.]
?????????????? [ 1.52662833e-05]
?????????????????????????????????? [ 1.]
???????????????????????????????????????? [ 1.52281245e-05]
?????????????????????????? [ 1.]
??????????? [ 1.59881820e-05]
:return:
'''
model = Sequential()
model.add(Embedding(input_dim=max_features,
output_dim=embedding_size,
input_length=max_seq))
model.add(Bidirectional(LSTM(hidden_size, return_sequences=True)))
model.add(TimeDistributed(Dense(embedding_size/2)))
model.add(Activation('softplus'))
model.add(MaxPooling1D(5))
model.add(Flatten())
# model.add(Dense(2048, activation='softplus'))
# model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
plot(model, to_file="text_feature_extract_model1.png", show_shapes=True)
return model
RNN-CNN_feature_extract.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录