RNN-CNN_feature_extract.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:Book_DeepLearning_Practice 作者: wac81 项目源码 文件源码
def text_feature_extract_model1(embedding_size=128, hidden_size=256):
    '''
    this is a model use normal Bi-LSTM and maxpooling extract feature

    examples:
????????? [  1.62172219e-05]
???????? [  1.65377696e-05]
?????,??? [ 1.]
???????? [ 1.]
????????? [  1.76498161e-05]
??????????????16?12?????????? [  1.59666997e-05]
??????????????????? [ 1.]
?????????????? [  1.52662833e-05]
?????????????????????????????????? [ 1.]
???????????????????????????????????????? [  1.52281245e-05]
?????????????????????????? [ 1.]
??????????? [  1.59881820e-05]


    :return:
    '''
    model = Sequential()
    model.add(Embedding(input_dim=max_features,
                        output_dim=embedding_size,
                        input_length=max_seq))
    model.add(Bidirectional(LSTM(hidden_size, return_sequences=True)))
    model.add(TimeDistributed(Dense(embedding_size/2)))
    model.add(Activation('softplus'))
    model.add(MaxPooling1D(5))
    model.add(Flatten())
    # model.add(Dense(2048, activation='softplus'))
    # model.add(Dropout(0.2))
    model.add(Dense(1, activation='sigmoid'))

    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.summary()
    plot(model, to_file="text_feature_extract_model1.png", show_shapes=True)
    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号