multi_task_model.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:BetaStock 作者: qweraqq 项目源码 文件源码
def build(self):
        dim_data = self.size_of_input_data_dim
        nb_time_step = self.size_of_input_timesteps
        financial_time_series_input = Input(shape=(nb_time_step, dim_data), name='x1')
        lstm_layer_1 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                            W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
                            return_sequences=True, name='lstm_layer1')
        lstm_layer_21 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                             W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
                             return_sequences=True, name='lstm_layer2_loss1')
        lstm_layer_22 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                             W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
                             return_sequences=True, name='lstm_layer2_loss2')
        lstm_layer_23 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                             W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
                             return_sequences=True, name='lstm_layer2_loss3')

        lstm_layer_24 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                             W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
                             return_sequences=True, name='lstm_layer2_loss4')

        lstm_layer_25 = LSTM(output_dim=nb_hidden_units, dropout_U=dropout, dropout_W=dropout,
                             W_regularizer=l2(l2_norm_alpha), b_regularizer=l2(l2_norm_alpha), activation='tanh',
                             return_sequences=True, name='lstm_layer2_loss5')
        h1 = lstm_layer_1(financial_time_series_input)
        h21 = lstm_layer_21(h1)
        h22 = lstm_layer_22(h1)
        h23 = lstm_layer_23(h1)
        h24 = lstm_layer_24(h1)
        h25 = lstm_layer_25(h1)
        time_series_predictions1 = TimeDistributed(Dense(1), name="p1")(h21)  # custom 1
        time_series_predictions2 = TimeDistributed(Dense(1), name="p2")(h22)  # custom 2
        time_series_predictions3 = TimeDistributed(Dense(1), name="p3")(h23)  # mse
        time_series_predictions4 = TimeDistributed(Dense(1, activation='sigmoid'), name="p4")(h24)  # logloss
        time_series_predictions5 = TimeDistributed(Dense(nb_labels, activation='softmax'), name="p5")(h25)  # cross
        self.model = Model(input=financial_time_series_input,
                           output=[time_series_predictions1, time_series_predictions2,
                                   time_series_predictions3, time_series_predictions4,
                                   time_series_predictions5],
                           name="multi-task deep rnn for financial time series forecasting")
        plot(self.model, to_file='model.png')
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号