def model_no_masking(discrete_time, init_alpha, max_beta):
model = Sequential()
model.add(TimeDistributed(Dense(2), input_shape=(n_timesteps, n_features)))
model.add(Lambda(wtte.output_lambda, arguments={"init_alpha": init_alpha,
"max_beta_value": max_beta}))
if discrete_time:
loss = wtte.loss(kind='discrete').loss_function
else:
loss = wtte.loss(kind='continuous').loss_function
model.compile(loss=loss, optimizer=RMSprop(lr=lr))
return model
评论列表
文章目录