def test_lstm_td(self):
np.random.seed(1988)
input_dim = 2
input_length = 4
num_channels = 3
# Define a model
model = Sequential()
model.add(SimpleRNN(num_channels, return_sequences=True,
input_shape=(input_length, input_dim),))
model.add(TimeDistributed(Dense(5)))
# Set some random weights
model.set_weights([np.random.rand(*w.shape)*0.2 - 0.1 for w in \
model.get_weights()])
# Test the keras model
self._test_keras_model(model, input_blob = 'data',
output_blob = 'output')
# Making sure that giant channel sizes get handled correctly
评论列表
文章目录