def decode_predictions(preds, top=5):
"""Decodes the prediction of an ImageNet model.
# Arguments
preds: Numpy tensor encoding a batch of predictions.
top: integer, how many top-guesses to return.
# Returns
A list of lists of top class prediction tuples
`(class_name, class_description, score)`.
One list of tuples per sample in batch input.
# Raises
ValueError: in case of invalid shape of the `pred` array
(must be 2D).
"""
global CLASS_INDEX
if len(preds.shape) != 2 or preds.shape[1] != 1000:
raise ValueError('`decode_predictions` expects '
'a batch of predictions '
'(i.e. a 2D array of shape (samples, 1000)). '
'Found array with shape: ' + str(preds.shape))
if CLASS_INDEX is None:
fpath = get_file('imagenet_class_index.json',
CLASS_INDEX_PATH,
cache_subdir='models')
CLASS_INDEX = json.load(open(fpath))
results = []
for pred in preds:
top_indices = pred.argsort()[-top:][::-1]
result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
result.sort(key=lambda x: x[2], reverse=True)
results.append(result)
return results
评论列表
文章目录