def __init__(self, incoming, num_filters, filter_size, stride=(1,1),
pad=0, untie_biases=False, kernel_size=3, kernel_pool_size=1,
W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.),
nonlinearity=lasagne.nonlinearities.rectify, flip_filters=True,
convolution=theano.tensor.nnet.conv2d, **kwargs):
super(DoubleConvLayer, self).__init__(incoming, num_filters, filter_size,
stride, 0, untie_biases, W, b,
nonlinearity, flip_filters, n=2,
**kwargs)
self.convolution = convolution
self.kernel_size = kernel_size
self.pool_size = kernel_pool_size
self.filter_offset = self.filter_size[0] - self.kernel_size + 1
self.n_times = self.filter_offset ** 2
self.rng = RandomStreams(123)
评论列表
文章目录