def main(argv=None):
input.init_dataset_constants()
num_images = GRID[0] * GRID[1]
FLAGS.batch_size = num_images
with tf.Graph().as_default():
g_template = model.generator_template()
z = tf.placeholder(tf.float32, shape=[FLAGS.batch_size, FLAGS.z_size])
#np.random.seed(1337) # generate same random numbers each time
noise = np.random.normal(size=(FLAGS.batch_size, FLAGS.z_size))
with pt.defaults_scope(phase=pt.Phase.test):
gen_images_op, _ = pt.construct_all(g_template, input=z)
sess = tf.Session()
init_variables(sess)
gen_images, = sess.run([gen_images_op], feed_dict={z: noise})
gen_images = (gen_images + 1) / 2
sess.close()
fig = plt.figure(1)
grid = ImageGrid(fig, 111,
nrows_ncols=GRID,
axes_pad=0.1)
for i in xrange(num_images):
im = gen_images[i]
axis = grid[i]
axis.axis('off')
axis.imshow(im)
plt.show()
fig.savefig('montage.png', dpi=100, bbox_inches='tight')
评论列表
文章目录