def main():
dataset = VOCBboxDataset(year='2007', split='test')
models = [
('Faster R-CNN', FasterRCNNVGG16(pretrained_model='voc07')),
('SSD300', SSD300(pretrained_model='voc0712')),
('SSD512', SSD512(pretrained_model='voc0712')),
]
indices = [29, 301, 189, 229]
fig = plot.figure(figsize=(30, 30))
for i, idx in enumerate(indices):
for j, (name, model) in enumerate(models):
img, _, _ = dataset[idx]
bboxes, labels, scores = model.predict([img])
bbox, label, score = bboxes[0], labels[0], scores[0]
ax = fig.add_subplot(
len(indices), len(models), i * len(models) + j + 1)
vis_bbox(
img, bbox, label, score,
label_names=voc_bbox_label_names, ax=ax
)
# Set MatplotLib parameters
ax.set_aspect('equal')
if i == 0:
font = FontProperties()
font.set_family('serif')
ax.set_title(name, fontsize=35, y=1.03, fontproperties=font)
plot.axis('off')
plot.tight_layout()
plot.show()
评论列表
文章目录