def test_int_features_in_pipeline(self):
import numpy.random as rn
import pandas as pd
rn.seed(0)
x_train_dict = [ dict( (rn.randint(100), 1)
for i in range(20))
for j in range(100)]
y_train = [0,1]*50
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction import DictVectorizer
from sklearn.linear_model import LogisticRegression
pl = Pipeline([("dv", DictVectorizer()), ("lm", LogisticRegression())])
pl.fit(x_train_dict, y_train)
import coremltools
model = coremltools.converters.sklearn.convert(pl, input_features = "features", output_feature_names = "target")
x = pd.DataFrame( {"features" : x_train_dict,
"prediction" : pl.predict(x_train_dict)})
cur_eval_metics = evaluate_classifier(model, x)
self.assertEquals(cur_eval_metics['num_errors'], 0)
评论列表
文章目录