def __init__(self, a_clf=None, a_grid_search=False):
"""Class constructor.
Args:
a_clf (classifier or None):
classifier to use or None for default
a_grid_search (bool): use grid search for estimating
hyper-parameters
"""
classifier = a_clf
self._gs = a_grid_search
if a_clf is None:
classifier = XGBClassifier(max_depth=MAX_DEPTH,
n_estimators=NTREES,
learning_rate=ALPHA,
objective="multi:softprob")
self._clf = classifier
# latest version of XGBoost cannot deal with non-sparse feature vectors
self._model = Pipeline([("vect", DictVectorizer()),
("clf", classifier)])
评论列表
文章目录