SqueezeNet.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:training 作者: bddmodelcar 项目源码 文件源码
def __init__(self, n_steps=10, n_frames=2):
        super(SqueezeNet, self).__init__()

        self.n_steps = n_steps
        self.n_frames = n_frames
        self.pre_metadata_features = nn.Sequential(
            nn.Conv2d(3 * 2 * self.n_frames, 64, kernel_size=3, stride=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
            Fire(64, 16, 64, 64)
        )
        self.post_metadata_features = nn.Sequential(
            Fire(256, 16, 64, 64),
            nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
            Fire(128, 32, 128, 128),
            Fire(256, 32, 128, 128),
            nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
            Fire(256, 48, 192, 192),
            Fire(384, 48, 192, 192),
            Fire(384, 64, 256, 256),
            Fire(512, 64, 256, 256),
        )
        final_conv = nn.Conv2d(512, self.n_steps * 4, kernel_size=1)
        self.final_output = nn.Sequential(
            nn.Dropout(p=0.5),
            final_conv,
            # nn.ReLU(inplace=True),
            nn.AvgPool2d(kernel_size=5, stride=6)
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m is final_conv:
                    init.normal(m.weight.data, mean=0.0, std=0.01)
                else:
                    init.kaiming_uniform(m.weight.data)
                if m.bias is not None:
                    m.bias.data.zero_()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号