resnet.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:open-reid 作者: Cysu 项目源码 文件源码
def __init__(self, depth, pretrained=True, cut_at_pooling=False,
                 num_features=0, norm=False, dropout=0, num_classes=0):
        super(ResNet, self).__init__()

        self.depth = depth
        self.pretrained = pretrained
        self.cut_at_pooling = cut_at_pooling

        # Construct base (pretrained) resnet
        if depth not in ResNet.__factory:
            raise KeyError("Unsupported depth:", depth)
        self.base = ResNet.__factory[depth](pretrained=pretrained)

        if not self.cut_at_pooling:
            self.num_features = num_features
            self.norm = norm
            self.dropout = dropout
            self.has_embedding = num_features > 0
            self.num_classes = num_classes

            out_planes = self.base.fc.in_features

            # Append new layers
            if self.has_embedding:
                self.feat = nn.Linear(out_planes, self.num_features)
                self.feat_bn = nn.BatchNorm1d(self.num_features)
                init.kaiming_normal(self.feat.weight, mode='fan_out')
                init.constant(self.feat.bias, 0)
                init.constant(self.feat_bn.weight, 1)
                init.constant(self.feat_bn.bias, 0)
            else:
                # Change the num_features to CNN output channels
                self.num_features = out_planes
            if self.dropout > 0:
                self.drop = nn.Dropout(self.dropout)
            if self.num_classes > 0:
                self.classifier = nn.Linear(self.num_features, self.num_classes)
                init.normal(self.classifier.weight, std=0.001)
                init.constant(self.classifier.bias, 0)

        if not self.pretrained:
            self.reset_params()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号