kdllib.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:crikey 作者: kastnerkyle 项目源码 文件源码
def invert_spectrogram(X_s, step, calculate_offset=True, set_zero_phase=True):
    """
    Under MSR-LA License

    Based on MATLAB implementation from Spectrogram Inversion Toolbox

    References
    ----------
    D. Griffin and J. Lim. Signal estimation from modified
    short-time Fourier transform. IEEE Trans. Acoust. Speech
    Signal Process., 32(2):236-243, 1984.

    Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory
    Model Inversion for Sound Separation. Proc. IEEE-ICASSP,
    Adelaide, 1994, II.77-80.

    Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal
    Estimation from Modified Short-Time Fourier Transform
    Magnitude Spectra. IEEE Transactions on Audio Speech and
    Language Processing, 08/2007.
    """
    size = int(X_s.shape[1] // 2)
    wave = np.zeros((X_s.shape[0] * step + size))
    # Getting overflow warnings with 32 bit...
    wave = wave.astype('float64')
    total_windowing_sum = np.zeros((X_s.shape[0] * step + size))
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))

    est_start = int(size // 2) - 1
    est_end = est_start + size
    for i in range(X_s.shape[0]):
        wave_start = int(step * i)
        wave_end = wave_start + size
        if set_zero_phase:
            spectral_slice = X_s[i].real + 0j
        else:
            # already complex
            spectral_slice = X_s[i]

        # Don't need fftshift due to different impl.
        wave_est = np.real(np.fft.ifft(spectral_slice))[::-1]
        if calculate_offset and i > 0:
            offset_size = size - step
            if offset_size <= 0:
                print("WARNING: Large step size >50\% detected! "
                      "This code works best with high overlap - try "
                      "with 75% or greater")
                offset_size = step
            offset = xcorr_offset(wave[wave_start:wave_start + offset_size],
                                  wave_est[est_start:est_start + offset_size])
        else:
            offset = 0
        wave[wave_start:wave_end] += win * wave_est[
            est_start - offset:est_end - offset]
        total_windowing_sum[wave_start:wave_end] += win
    wave = np.real(wave) / (total_windowing_sum + 1E-6)
    return wave
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号