layers.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:aed-by-cnn 作者: tweihaha 项目源码 文件源码
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
                 pad=0, untie_biases=False,
                 W=init.GlorotUniform(), b=init.Constant(0.),
                 nonlinearity=nonlinearities.rectify,
                 convolution=T.nnet.conv2d, **kwargs):
        super(Conv2DXLayer, self).__init__(incoming, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.filter_size = as_tuple(filter_size, 2)
        self.stride = as_tuple(stride, 2)
        self.untie_biases = untie_biases
        self.convolution = convolution

        if pad == 'same':
            if any(s % 2 == 0 for s in self.filter_size):
                raise NotImplementedError(
                    '`same` padding requires odd filter size.')
        if pad == 'strictsamex':
            if not (stride == 1 or stride == (1, 1)):
                raise NotImplementedError(
                    '`strictsamex` padding requires stride=(1, 1) or 1')

        if pad == 'valid':
            self.pad = (0, 0)
        elif pad in ('full', 'same', 'strictsamex'):
            self.pad = pad
        else:
            self.pad = as_tuple(pad, 2, int)

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            if self.untie_biases:
                biases_shape = (num_filters, self.output_shape[2], self.
                                output_shape[3])
            else:
                biases_shape = (num_filters,)
            self.b = self.add_param(b, biases_shape, name="b",
                                    regularizable=False)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号