def build_recur_dropout_sgru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p):
# Construct Bi-directional LSTM-CNNs-CRF with recurrent dropout.
# first get some necessary dimensions or parameters
conv_window = 3
# shape = [batch, n-step, c_dim, char_length]
# construct convolution layer
# shape = [batch, n-step, c_filters, output_length]
cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
# infer the pool size for pooling (pool size should go through all time step of cnn)
_, _, _, pool_size = cnn_layer.output_shape
# construct max pool layer
# shape = [batch, n-step, c_filters, 1]
pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
# reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))
# finally, concatenate the two incoming layers together.
# shape = [batch, n-step, c_filter&w_dim]
incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)
# dropout for incoming
incoming = lasagne.layers.DropoutLayer(incoming, p=0.2, shared_axes=(1,))
resetgate_input_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
resetgate_hidden_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
W_cell=None, nonlinearity=nonlinearities.tanh)
sgru_forward = SGRULayer(incoming, num_units, mask_input=mask,
resetgate_input=resetgate_input_forward, resetgate_hidden=resetgate_hidden_forward,
updategate=updategate_forward, hidden_update=hidden_update_forward,
grad_clipping=grad_clipping, p=p, name='forward')
resetgate_input_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
resetgate_hidden_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
W_cell=None, nonlinearity=nonlinearities.tanh)
sgru_backward = SGRULayer(incoming, num_units, mask_input=mask, backwards=True,
resetgate_input=resetgate_input_backward, resetgate_hidden=resetgate_hidden_backward,
updategate=updategate_backward, hidden_update=hidden_update_backward,
grad_clipping=grad_clipping, p=p, name='backward')
# concatenate the outputs of forward and backward LSTMs to combine them.
bi_sgru_cnn = lasagne.layers.concat([sgru_forward, sgru_backward], axis=2, name="bi-sgru")
# shape = [batch, n-step, num_units]
bi_sgru_cnn = lasagne.layers.DropoutLayer(bi_sgru_cnn, p=p, shared_axes=(1,))
# reshape bi-rnn-cnn to [batch * max_length, num_units]
bi_sgru_cnn = lasagne.layers.reshape(bi_sgru_cnn, (-1, [2]))
# construct output layer (dense layer with softmax)
layer_output = lasagne.layers.DenseLayer(bi_sgru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
name='softmax')
return layer_output
评论列表
文章目录