def train_universal_model(self, features: dict):
logging.debug('Start training universal model')
universal_model = MLPRegressor(hidden_layer_sizes=(5,),
activation='relu',
solver='adam',
learning_rate='adaptive',
max_iter=1000,
learning_rate_init=0.01,
alpha=0.01)
start_time = int(time() * 1000)
f_vector = []
s_vector = []
for product_id, vector_tuple in features.items():
f_vector.extend(vector_tuple[0])
s_vector.extend(vector_tuple[1])
universal_model.fit(f_vector, s_vector)
end_time = int(time() * 1000)
logging.debug('Finished training universal model')
logging.debug('Training took {} ms'.format(end_time - start_time))
self.set_universal_model_thread_safe(universal_model)
评论列表
文章目录