def eval_images_naive(it, gen, data, tag='', sampler=None):
metrics = OrderedDict()
if sampler is not None:
z = sampler(128)
samples = gen(z) # Feed z
else:
samples = gen(128) # Generate n images
true_samples = data.validation.images
true_labels = data.validation.labels if 'labels' in dir(data.validation) else None
# Compute dist.
dist_func = lambda a, b: np.linalg.norm((a - b).reshape((-1)), ord=2)
# Distance: (generated samples) x (true samples)
dist = np.array([[dist_func(x, x_true) for x_true in true_samples] for x in samples])
best_matching_i_true = np.argmin(dist, axis=1)
metrics['n_modes'] = len(np.unique(best_matching_i_true))
metrics['ave_dist'] = np.average(np.min(dist, axis=1))
# Check the labels (if exist)
if true_labels is not None:
label_cnts = np.sum(true_labels[best_matching_i_true], axis=0)
metrics['n_labels'] = np.sum(label_cnts > 0)
# Compute SSIM among top-k candidates (XXX: No supporting evidence for this approx.)
k = 10
top_k_matching_samples = np.argpartition(dist, k, axis=1)[:, :k]
# Please refer to https://en.wikipedia.org/wiki/Structural_similarity
# compare_ssim assumes (W, H, C) ordering
sim_func = lambda a, b: ssim(a, b, multichannel=True, data_range=2.0)
# Similarity: (generated samples) x (top-k candidates)
sim = [[sim_func(samples[i], true_samples[i_true]) for i_true in i_topk] \
for i, i_topk in enumerate(top_k_matching_samples)]
sim = np.array(sim)
metrics['ave_sim'] = np.average(np.max(sim, axis=1))
# TODO: Impl. IvOM
# TODO: Impl. better metrics
print "Eval({}) ".format(it), ', '.join(['{}={:.2f}'.format(k, v) for k, v in metrics.iteritems()])
return metrics
评论列表
文章目录