def __init__(self, args, infer=False):
self.args = args
if infer:
args.batch_size = 1
args.seq_length = 1
if args.rnncell == 'rnn':
cell_fn = rnn_cell.BasicRNNCell
elif args.rnncell == 'gru':
cell_fn = rnn_cell.GRUCell
elif args.rnncell == 'lstm':
cell_fn = rnn_cell.BasicLSTMCell
else:
raise Exception("rnncell type not supported: {}".format(args.rnncell))
cell = cell_fn(args.rnn_size)
self.cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.initial_state = self.cell.zero_state(args.batch_size, tf.float32)
with tf.variable_scope('rnnlm'):
softmax_w = build_weight([args.rnn_size, args.vocab_size],name='soft_w')
softmax_b = build_weight([args.vocab_size],name='soft_b')
word_embedding = build_weight([args.vocab_size, args.embedding_size],name='word_embedding')
inputs_list = tf.split(1, args.seq_length, tf.nn.embedding_lookup(word_embedding, self.input_data))
inputs_list = [tf.squeeze(input_, [1]) for input_ in inputs_list]
def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
if not args.attention:
outputs, last_state = seq2seq.rnn_decoder(inputs_list, self.initial_state, self.cell, loop_function=loop if infer else None, scope='rnnlm')
else:
self.attn_length = 5
self.attn_size = 32
self.attention_states = build_weight([args.batch_size, self.attn_length, self.attn_size])
outputs, last_state = seq2seq.attention_decoder(inputs_list, self.initial_state, self.attention_states, self.cell, loop_function=loop if infer else None, scope='rnnlm')
self.final_state = last_state
output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
loss = seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
# average loss for each word of each timestep
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.lr = tf.Variable(0.0, trainable=False)
self.var_trainable_op = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, self.var_trainable_op),
args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, self.var_trainable_op))
self.initial_op = tf.initialize_all_variables()
self.saver = tf.train.Saver(tf.all_variables(),max_to_keep=5,keep_checkpoint_every_n_hours=1)
self.logfile = args.log_dir+str(datetime.datetime.strftime(datetime.datetime.now(),'%Y-%m-%d %H:%M:%S')+'.txt').replace(' ','').replace('/','')
self.var_op = tf.all_variables()
seq2seq_rnn.py 文件源码
python
阅读 17
收藏 0
点赞 0
评论 0
评论列表
文章目录