def process(df: pd.DataFrame) -> dict:
"""
Compute aggregate results for a given data frame and return a
dictionary containing those results to be an entry in the results
data frame.
"""
sensor_index = df.ix[0]['sensor_index']
swing = int(0.5 * len(df))
rmse_offsets = np.array(range(-swing, swing + 1))
rmse_values = np.array([mean_offset_rmse(df, n) for n in rmse_offsets])
lag = 0.25 * rmse_offsets[rmse_values.argmin()]
figure = Figure(
title='Mean RMSE Values for Sensor #{}'.format(int(sensor_index)),
x_axis_label='Time Difference (Hours)',
y_axis_label='Mean RMSE Value'
)
figure.line(0.25 * rmse_offsets, rmse_values)
cd.display.bokeh(figure, 0.3)
return dict(
sensor_index=sensor_index,
mean_temperature=df['temperature'].mean(),
minimzed_mean_rmse=min(rmse_values),
lag=lag
)
评论列表
文章目录