def __init__(self, linenames, sessionname=None, colors=None, xaxis='iterations', callevery=1):
"""
:type linenames: list or tuple
:param linenames: Names of the time series for the Bokeh server to plot. The call method must have the names
in the list as keyword arguments.
:type sessionname: str
:param sessionname: Name of the Bokeh session
:type xaxis: str
:param xaxis: What goes in the x axis ('iterations' or 'epochs')
"""
super(plotter, self).__init__(callevery=callevery)
# Meta
self.linenames = list(linenames)
self.sessionname = "PlotterID-{}".format(id(self)) if sessionname is None else sessionname
self.colors = colors if colors is not None else [None,] * len(self.linenames)
self.xaxis = xaxis
# Init plot server
bplt.output_server(self.sessionname)
# Build figure
self.figure = bplt.figure()
self.figure.xaxis.axis_label = self.xaxis
# Make lines in figure
for name, color in zip(self.linenames, self.colors):
if color is not None:
self.figure.line(x=[], y=[], name=name, color=color, legend=name)
else:
self.figure.line(x=[], y=[], name=name, legend=name)
bplt.show(self.figure)
# Make list of renderers and datasources
self.renderers = {name: self.figure.select(dict(name=name)) for name in self.linenames}
self.datasources = {name: self.renderers[name][0].data_source for name in self.linenames}
trainkit.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录