trainkit.py 文件源码

python
阅读 15 收藏 0 点赞 0 评论 0

项目:nature_methods_multicut_pipeline 作者: ilastik 项目源码 文件源码
def __init__(self, linenames, sessionname=None, colors=None, xaxis='iterations', callevery=1):
        """
        :type linenames: list or tuple
        :param linenames: Names of the time series for the Bokeh server to plot. The call method must have the names
                          in the list as keyword arguments.

        :type sessionname: str
        :param sessionname: Name of the Bokeh session

        :type xaxis: str
        :param xaxis: What goes in the x axis ('iterations' or 'epochs')
        """
        super(plotter, self).__init__(callevery=callevery)

        # Meta
        self.linenames = list(linenames)
        self.sessionname = "PlotterID-{}".format(id(self)) if sessionname is None else sessionname
        self.colors = colors if colors is not None else [None,] * len(self.linenames)
        self.xaxis = xaxis

        # Init plot server
        bplt.output_server(self.sessionname)

        # Build figure
        self.figure = bplt.figure()
        self.figure.xaxis.axis_label = self.xaxis

        # Make lines in figure
        for name, color in zip(self.linenames, self.colors):
            if color is not None:
                self.figure.line(x=[], y=[], name=name, color=color, legend=name)
            else:
                self.figure.line(x=[], y=[], name=name, legend=name)

        bplt.show(self.figure)

        # Make list of renderers and datasources
        self.renderers = {name: self.figure.select(dict(name=name)) for name in self.linenames}
        self.datasources = {name: self.renderers[name][0].data_source for name in self.linenames}
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号