def variantWalk(self):
tick = time.time()
alpha = self.param['alpha']
n = self.graph.shape[0]
c = self.Y.shape[1]
nf = self.param['normalize_factor']
data = (self.graph.sum(axis=0) + nf * np.ones(n)).ravel()
Di = sparse.spdiags(data,0,n,n).tocsc()
S_iter = (Di - alpha * self.graph).tocsc()
F = np.zeros((n, c))
for i in range(c):
F[:, i], info = slin.cg(S_iter, self.Y[:, i], tol=1e-10)
toc = time.time()
self.ElapsedTime = toc - tick
self.PredictedProbs = F
评论列表
文章目录