def get_eigen_vector(self):
# w,v = np.linalg.eig(self.M)
# print(max(w),w)
# max_ind = np.where(w==max(w))[0][0]
# print(max_ind)
# self.w_inf = v[:,max_ind]
# rearrangedEvalsVecs = sorted(zip(evals,evecs.T),\
# key=lambda x: x[0].real, reverse=True)
self.w_inf = eigs(self.M.T,1)[1].flatten()
#make sum 1:
# print(self.w_inf[:5])
self.w_inf = self.w_inf / np.sum(self.w_inf)
print(self.w_inf[:5])
# print(self.w_inf.shape)
code.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录