def conv_embedding(images, output, other_features = [], dropout_rate=0.1,
embedding_dropout=0.1, embedding_l2=0.05, constrain_norm=True):
print("Building conv net")
x_embedding = architectures.convnet(images, Dense(64, activation='linear'),
dropout_rate=embedding_dropout,
activations='relu',
l2_rate=embedding_l2, constrain_norm=constrain_norm)
if len(other_features) > 0:
embedd = Concatenate(axis=1)([x_embedding] + other_features)
else:
embedd = x_embedding
out = architectures.feed_forward_net(embedd, output,
hidden_layers=[32],
dropout_rate=dropout_rate,
activations='relu', constrain_norm=constrain_norm)
return out
评论列表
文章目录