def build_2d_main_residual_network(batch_size,
width,
height,
channel_size,
output_dim,
loop_depth=15,
dropout=0.3):
inp = Input(shape=(width,height,channel_size))
# add mask for filter invalid data
out = TimeDistributed(Masking(mask_value=0))(inp)
out = Conv2D(128,5,data_format='channels_last')(out)
out = BatchNormalization()(out)
out = Activation('relu')(out)
out = first_2d_block(out,(64,128),dropout=dropout)
for _ in range(loop_depth):
out = repeated_2d_block(out,(64,128),dropout=dropout)
# add flatten
out = Flatten()(out)
out = BatchNormalization()(out)
out = Activation('relu')(out)
out = Dense(output_dim)(out)
model = Model(inp,out)
model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
return model
评论列表
文章目录