pdf_to_video.py 文件源码

python
阅读 17 收藏 0 点赞 0 评论 0

项目:Opened 作者: Veerendra-Gopi 项目源码 文件源码
def get_topics_from_text(line):
    doc_complete = line.split('.')
    doc_clean = [clean_txt_to_clean_words(doc).split() for doc in doc_complete]# ignore if length of docs for topic analysis is less than 3        
    doc_clean_empty = True
    all_topics = []
    for doc in doc_clean:
        if len(doc) > 0:
            doc_clean_empty = False
    if len(doc_clean) >=1 and doc_clean_empty == False:
        dictionary = corpora.Dictionary(doc_clean)
        doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]
        Lda = gensim.models.ldamodel.LdaModel
        num_topics = 3
        ldamodel = Lda(doc_term_matrix, num_topics=num_topics, id2word = dictionary, passes=25)
        # print '\n\n',doc_complete
        # print '\n',doc_clean, '\n'
        # print ldamodel.print_topics(num_topics=5, num_words=2), '\n\n'
        for i in range(0,num_topics):
            topic = ldamodel.get_topic_terms(i, topn=2)
            topic_list = []
            for word in topic:
                word_name = dictionary.get(word[0])
                if len(word_name) > 1:
                    topic_list.append(word_name)
            topic_list.sort()
            topic_name = " ".join(topic_list)
            add = False
            for ch in topic_name:# ignore numerical topics
                if ch in r"[abcdefghijklmnopqrstuvwxyz]":
                    add = True
            if add:
                if topic_name not in all_topics:
                    all_topics.append(str(topic_name))

    return all_topics
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号