def __init__(self, mode, input_size, hidden_size, num_layers=1,
batch_first=False, dropout=0, train=True, bidirectional=False,
batch_sizes=None, dropout_state=None):
super(CudnnRNN, self).__init__()
if dropout_state is None:
dropout_state = {}
self.mode = cudnn.rnn.get_cudnn_mode(mode)
self.input_mode = cudnn.CUDNN_LINEAR_INPUT
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.batch_first = batch_first
self.dropout = dropout
self.train = train
self.bidirectional = 1 if bidirectional else 0
self.num_directions = 2 if bidirectional else 1
self.batch_sizes = batch_sizes
self.dropout_seed = torch.IntTensor(1).random_()[0]
self.dropout_state = dropout_state
评论列表
文章目录