def backward(self, weight, bias, input, grad_output):
grad_input = input.new()
grad_input.resize_as_(input)
torch._C._cudnn_convolution_backward_data(
grad_output, grad_input, weight, self._cudnn_info,
cudnn.benchmark)
grad_weight = weight.new().resize_as_(weight)
torch._C._cudnn_convolution_backward_filter(grad_output, input, grad_weight, self._cudnn_info,
cudnn.benchmark)
if bias is not None:
grad_bias = bias.new().resize_as_(bias)
torch._C._cudnn_convolution_backward_bias(grad_output, grad_bias, self._cudnn_info)
else:
grad_bias = None
return grad_weight, grad_bias, grad_input
densenet_efficient_multi_gpu.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录