def forward(self, weight, bias, input):
# Assert we're using cudnn
for i in ([weight, bias, input]):
if i is not None and not(cudnn.is_acceptable(i)):
raise Exception('You must be using CUDNN to use _EfficientBatchNorm')
res = input.new(*self._output_size(input, weight))
self._cudnn_info = torch._C._cudnn_convolution_full_forward(
input, weight, bias, res,
(self.padding, self.padding),
(self.stride, self.stride),
(self.dilation, self.dilation),
self.groups, cudnn.benchmark
)
return res
densenet_efficient_multi_gpu.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录