def run(self):
self.build_model()
self.resume_and_evaluate()
cudnn.benchmark = True
for self.epoch in range(self.start_epoch, self.nb_epochs):
self.train_1epoch()
prec1, val_loss = self.validate_1epoch()
is_best = prec1 > self.best_prec1
#lr_scheduler
self.scheduler.step(val_loss)
# save model
if is_best:
self.best_prec1 = prec1
with open('record/motion/motion_video_preds.pickle','wb') as f:
pickle.dump(self.dic_video_level_preds,f)
f.close()
save_checkpoint({
'epoch': self.epoch,
'state_dict': self.model.state_dict(),
'best_prec1': self.best_prec1,
'optimizer' : self.optimizer.state_dict()
},is_best,'record/motion/checkpoint.pth.tar','record/motion/model_best.pth.tar')
motion_cnn.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录