execute.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:deep-news-summarization 作者: hengluchang 项目源码 文件源码
def decode():
  with tf.Session() as sess:
    # Create model and load parameters.
    model = create_model(sess, True)
    model.batch_size = 1  # We decode one sentence at a time.

    # Load vocabularies.
    enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d_enc.txt" % gConfig['enc_vocab_size'])
    dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d_dec.txt" % gConfig['dec_vocab_size'])

    enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)
    _, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)



    # Decode sentence and store it
    with open(gConfig["test_enc"], 'r') as test_enc:
        with open(gConfig["output"], 'w') as predicted_headline:
            sentence_count = 0
            for sentence in test_enc:
                # Get token-ids for the input sentence.
                token_ids = data_utils.sentence_to_token_ids(sentence, enc_vocab)
                # Which bucket does it belong to? And place the sentence to the last bucket if its token length is larger then X.
                bucket_id = min([b for b in range(len(_buckets)) if _buckets[b][0] > len(token_ids)] + [len(_buckets)-1])
                # Get a 1-element batch to feed the sentence to the model.
                encoder_inputs, decoder_inputs, target_weights = model.get_batch(
                {bucket_id: [(token_ids, [])]}, bucket_id)
                # Get output logits for the sentence.
                _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
                                           target_weights, bucket_id, True)

                # This is a greedy decoder - outputs are just argmaxes of output_logits.
                outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]

                # If there is an EOS symbol in outputs, cut them at that point.
                if data_utils.EOS_ID in outputs:
                    outputs = outputs[:outputs.index(data_utils.EOS_ID)]
                # Write predicted headline corresponding to article.
                predicted_headline.write(" ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs])+'\n')
                sentence_count += 1
                if sentence_count % 100 == 0:
                    print("predicted data line %d" % sentence_count)
                    sys.stdout.flush()

        predicted_headline.close()
    test_enc.close()

    print("Finished decoding and stored predicted results in %s!" % gConfig["output"])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号