style_transfer.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:neural_style 作者: metaflow-ai 项目源码 文件源码
def fast_st_ps(input_shape, weights_path=None, mode=0, nb_res_layer=5):
    input = Input(shape=input_shape, name='input_node', dtype=K.floatx())
    # Downsampling
    p11 = ReflectPadding2D(padding=(4, 4))(input)
    c11 = Convolution2D(32, 9, 9, dim_ordering=K.image_dim_ordering(), 
        init='he_normal', subsample=(1, 1), border_mode='valid', activation='linear')(p11)
    bn11 = InstanceNormalization('inorm-1')(c11)
    a11 = Activation('relu')(bn11)

    p12 = ReflectPadding2D(padding=(1, 1))(a11)
    c12 = Convolution2D(64, 3, 3, dim_ordering=K.image_dim_ordering(), 
        init='he_normal', subsample=(2, 2),  border_mode='valid', activation='linear')(p12)
    bn12 = InstanceNormalization('inorm-2')(c12)
    a12 = Activation('relu')(bn12)

    p13 = ReflectPadding2D(padding=(1, 1))(a12)
    c13 = Convolution2D(128, 3, 3, dim_ordering=K.image_dim_ordering(), 
        init='he_normal', subsample=(2, 2), border_mode='valid', activation='linear')(p13)
    bn13 = InstanceNormalization('inorm-3')(c13)
    last_out = Activation('relu')(bn13)

    for i in range(nb_res_layer):
        p = ReflectPadding2D(padding=(1, 1))(last_out)
        c = Convolution2D(128, 3, 3, dim_ordering=K.image_dim_ordering(), 
            init='he_normal', subsample=(1, 1), border_mode='valid', activation='linear')(p)
        bn = InstanceNormalization('inorm-res-%d' % i)(c)
        a = Activation('relu')(bn)
        p = ReflectPadding2D(padding=(1, 1))(a)
        c = Convolution2D(128, 3, 3, dim_ordering=K.image_dim_ordering(), 
            init='he_normal', subsample=(1, 1), border_mode='valid', activation='linear')(p)
        bn = InstanceNormalization('inorm-5-%d' % i)(c)
        # a = Activation('relu')(bn)
        last_out = merge([last_out, bn], mode='sum')
        # last_out = a

    out = PhaseShift(ratio=4, color=False)(last_out)

    out = ReflectPadding2D(padding=(4, 4))(out)
    out = Convolution2D(3, 9, 9, dim_ordering=K.image_dim_ordering(), 
        init='he_normal', subsample=(1, 1), border_mode='valid', activation='linear')(out)
    out = ScaledSigmoid(scaling=255., name="output_node")(out)


    model = Model(input=[input], output=[out])

    if weights_path:
        model.load_weights(weights_path)

    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号