def return_custom():
import keras.backend as K
from keras.engine import Layer
class Dropout_cust(Layer): # pragma: no cover
'''Applies Dropout to the input.
'''
def __init__(self, p, **kwargs):
self.p = p
if 0. < self.p < 1.:
self.uses_learning_phase = True
self.supports_masking = True
super(Dropout_cust, self).__init__(**kwargs)
def call(self, x, mask=None):
if 0. < self.p < 1.:
x = K.in_train_phase(K.dropout(x, level=self.p), x)
return x
def get_config(self):
config = {'p': self.p}
base_config = super(Dropout_cust, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
return Dropout_cust
评论列表
文章目录