def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
shape = (input_shape[self.axis],)
self.gamma = self.add_weight(shape,
initializer=self.gamma_init,
regularizer=self.gamma_regularizer,
name='{}_gamma'.format(self.name))
self.beta = self.add_weight(shape,
initializer=self.beta_init,
regularizer=self.beta_regularizer,
name='{}_beta'.format(self.name))
self.running_mean = self.add_weight(shape, initializer='zero',
name='{}_running_mean'.format(self.name),
trainable=False)
# Note: running_std actually holds the running variance, not the running std.
self.running_std = self.add_weight(shape, initializer='one',
name='{}_running_std'.format(self.name),
trainable=False)
self.r_max = K.variable(np.ones((1,)), name='{}_r_max'.format(self.name))
self.d_max = K.variable(np.zeros((1,)), name='{}_d_max'.format(self.name))
self.t = K.variable(np.zeros((1,)), name='{}_t'.format(self.name))
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
评论列表
文章目录