def numba_kde_multithread(eval_points, samples, bandwidths):
result = np.zeros_like(eval_points)
# SPEEDTIP: Parallelize over evaluation points with prange()
for i in numba.prange(len(eval_points)):
eval_x = eval_points[i]
for sample, bandwidth in zip(samples, bandwidths):
result[i] += gaussian((eval_x - sample) / bandwidth) / bandwidth
result[i] /= len(samples)
return result
#### END: numba_multithread
评论列表
文章目录