def convolve_mean3_gu(image, index, out_image):
nx, ny, nk = image.shape
for j in range(1,ny-1):
for k in range(3):
out_image[j-1, k] = 0.25*(image[index[0]-1,j,k]+image[index[0]+1,j,k]+image[index[0],j-1,k]+image[index[0],j+1,k])
#@numba.jit
#def convolve_mean2(image):
# height, width = image.shape
# out_image = np.empty((height-2, width-2))
# i = np.arange(1, height-1)
# j = np.arange(1, width-1)
# convolve_mean2_gu(image, i[:, np.newaxis], j[np.newaxis, :], out_image)
# return out_image
评论列表
文章目录