def detection(img, net, transformer, labels_file):
im = caffe.io.load_image(img)
net.blobs['data'].data[...] = transformer.preprocess('data', im)
start = time.clock()
# ????
net.forward()
end = time.clock()
print('detection time: %f s' % (end - start))
# ????????
file = open(labels_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)
loc = net.blobs['detection_out'].data[0][0]
confidence_threshold = 0.5
for l in range(len(loc)):
if loc[l][2] >= confidence_threshold:
xmin = int(loc[l][3] * im.shape[1])
ymin = int(loc[l][4] * im.shape[0])
xmax = int(loc[l][5] * im.shape[1])
ymax = int(loc[l][6] * im.shape[0])
img = np.zeros((512, 512, 3), np.uint8) # ?????????
cv2.rectangle(im, (xmin, ymin), (xmax, ymax), (55 / 255.0, 255 / 255.0, 155 / 255.0), 2)
# ??????
class_name = labelmap.item[int(loc[l][1])].display_name
# text_font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SCRIPT_SIMPLEX, 1, 1, 0, 3, 8)
cv2.putText(im, class_name, (xmin, ymax), cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, (55, 255, 155), 2)
# ????
plt.imshow(im, 'brg')
plt.show()
#CPU?GPU????
评论列表
文章目录