def make_datum(img, label):
#image is numpy.ndarray format. BGR instead of RGB
return caffe_pb2.Datum(
channels=3,
width=IMAGE_WIDTH,
height=IMAGE_HEIGHT,
label=label,
data=np.transpose(img, (2, 0, 1)).tostring())
# or .tobytes() if numpy < 1.9
# key = 0
# env = lmdb.open(img_lmdb_path, map_size=int(1e12))
# with env.begin(write=True) as txn:
# for idx in xrange(numSample):
# info = data[idx].split(" ")
# OriImg = cv2.imread(datadir + info[0])
# img = cv2.resize(OriImg,(IMAGE_WIDTH,IMAGE_HEIGHT))
# label = int(info[1])
# img = np.transpose(img, (2, 0, 1))
# datum = caffe.io.array_to_datum(img, label)
# key_str = '{:08}'.format(key)
# # txn.put(key_str.encode('ascii'), datum.SerializeToString())
# txn.put(key_str, datum.SerializeToString())
# key += 1
# for idx in xrange(numSample):
# info = data[idx].split(" ")
# OriImg = cv2.imread(datadir + info[0])
# img = cv2.resize(OriImg,(IMAGE_WIDTH,IMAGE_HEIGHT))
# label = int(info[1])
# img = cv2.flip(img,1)
# img = np.transpose(img, (2, 0, 1))
# datum = caffe.io.array_to_datum(img, label)
# key_str = '{:08}'.format(key)
# # txn.put(key_str.encode('ascii'), datum.SerializeToString())
# txn.put(key_str, datum.SerializeToString())
# key += 1
# print key
评论列表
文章目录