def setup(self):
mean_file = os.path.join(self.model_dir, 'mean.binaryproto')
labels_file = os.path.join(self.model_dir, 'labels.txt')
self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
self.transformer.set_transpose('data', (2, 0, 1))
self.transformer.set_raw_scale('data', 255)
self.transformer.set_channel_swap('data', (2, 1, 0))
# set mean pixel
with open(mean_file, 'rb') as infile:
blob = caffe_pb2.BlobProto()
blob.MergeFromString(infile.read())
if blob.HasField('shape'):
blob_dims = blob.shape
assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is %s' % blob.shape
elif blob.HasField('num') and blob.HasField('channels') and \
blob.HasField('height') and blob.HasField('width'):
blob_dims = (blob.num, blob.channels, blob.height, blob.width)
else:
raise ValueError('blob does not provide shape or 4d dimensions')
pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
self.transformer.set_mean('data', pixel)
# This is overkill here, since we only have 2 labels, but here's how we might read them.
# Later we'd grab the label we want based on position (e.g., 0=dolphin, 1=seahorse)
self.labels = np.loadtxt(labels_file, str, delimiter='\n')
classify-samples.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录