def train_solver(conf):
s = caffe_pb2.SolverParameter()
# Set a seed for reproducible experiments:
# this controls for randomization in training.
#s.random_seed = 0xCAFFE
# Specify locations of the train and (maybe) test networks.
s.train_net = conf.train_net_file
s.test_net.append(conf.test_net_file)
s.test_interval = 10000 # Test after every 500 training iterations.
s.test_iter.append(1) # Test on 100 batches each time we test.
s.max_iter = conf.max_iter # no. of times to update the net (training iterations)
# s.max_iter = 50000 # no. of times to update the net (training iterations)
s.type = "AdaGrad"
s.gamma = 0.1
s.base_lr = 0.01
s.weight_decay = 5e-4
s.lr_policy = 'multistep'
s.display = 10000
s.snapshot = 10000
s.snapshot_prefix = conf.snapshot_prefix
#s.stepvalue.append(1000000)
#s.stepvalue.append(300000)
s.solver_mode = caffe_pb2.SolverParameter.GPU
s.device_id = 1 # will use the second GPU card
s.snapshot_format = 0 # 0 is HDF5, 1 is binary
return s
proto_file.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录