util.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:topic-ensemble 作者: derekgreene 项目源码 文件源码
def preprocess( docs, stopwords, min_df = 3, min_term_length = 2, ngram_range = (1,1), apply_tfidf = True, apply_norm = True, lemmatize = False ):
    """
    Preprocess a list containing text documents stored as strings.
    """
    token_pattern = re.compile(r"\b\w\w+\b", re.U)

    if lemmatize:
        from nltk.stem import WordNetLemmatizer
        wnl = WordNetLemmatizer()

    def normalize( x ):
        x = x.lower()
        if lemmatize:
            return wnl.lemmatize(x)
        return x

    def custom_tokenizer( s ):
        return [normalize(x) for x in token_pattern.findall(s) if (len(x) >= min_term_length and x[0].isalpha() ) ]

    # Build the Vector Space Model, apply TF-IDF and normalize lines to unit length all in one call
    if apply_norm:
        norm_function = "l2"
    else:
        norm_function = None
    tfidf = TfidfVectorizer(stop_words=stopwords, lowercase=True, strip_accents="unicode", tokenizer=custom_tokenizer, use_idf=apply_tfidf, norm=norm_function, min_df = min_df, ngram_range = ngram_range) 
    X = tfidf.fit_transform(docs)
    terms = []
    # store the vocabulary map
    v = tfidf.vocabulary_
    for i in range(len(v)):
        terms.append("")
    for term in v.keys():
        terms[ v[term] ] = term
    return (X,terms)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号