def train(filePath):
try:
if not filePath.lower().endswith('json'):
return {'success':False,'message':'Training file should be in json format'}
with open(filePath) as file:
ent_data = json.load(file)
dataset = [jsonToCrf(q, nlp) for q in ent_data['entity_examples']]
X_train = [sent2features(s) for s in dataset]
y_train = [sent2labels(s) for s in dataset]
crf = sklearn_crfsuite.CRF(
algorithm='lbfgs',
c1=0.1,
c2=0.1,
max_iterations=100,
all_possible_transitions=True
)
crf.fit(X_train, y_train)
if(not os.path.exists("crfModel")):
os.mkdir("crfModel")
if(os.path.isfile("crfModel/classifier.pkl")):
os.remove("crfModel/classifier.pkl")
joblib.dump(crf,"crfModel/classifier.pkl")
return {'success':True,'message':'Model Trained Successfully'}
except Exception as ex:
return {'success':False,'message':'Error while Training the model - '+str(ex)}
entityRecognition.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录