def make_dataloader_torchvison_imagefolder(dir_data, data_transforms, ext_img,
n_img_per_batch, n_worker):
li_class = prepare_cifar10_dataset(dir_data, ext_img)
li_set = ['train', 'test']
dsets = {x: datasets.ImageFolder(join(dir_data, x), data_transforms[x])
for x in li_set}
dset_loaders = {x: torch.utils.data.DataLoader(
dsets[x], batch_size=n_img_per_batch, shuffle=True, num_workers=n_worker) for x in li_set}
trainloader, testloader = dset_loaders[li_set[0]], dset_loaders[li_set[1]]
return trainloader, testloader, li_class
cifar10_custom_dataset_gap.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录